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0. Introduction 

In this paper we construct the separable algebraic closure of any field in a topos 8. 
(A separable closure is a field extension in which every separable polynomial splits 
and which is generated by the roots of these polynomials. P is a separable 
polynomial if P and its derivative P’ are relatively prime.) The separable closure 
lives in a new topos, over b, and has the universal property which makes it a 
spectrum in the sense of Cole, see [l], [9] and [4, Theorem 6.581. 

Recall that if 8 is the topos of Sets there are two ways to construct this spectrum. 
One is to use the &ale topos which is the home of the generic separable closure of an 
arbitrary commutative ring in Sets (see [3,12]). As shown by Hakim [3, pp. 77-841, 
this construction can be applied within any Grothendieck topos by setting up the 
&ale topology (object by object on the defining site of the topos). 

Alternatively, we can describe the generic separable closure of a field as a field 
extension in the topos of continuous G-Sets where G is the profinite Galois group. 
In this paper, we generalize the profinite Galois group approach. We feel that the 
value of this paper lies not so much in the alternative, more internal, construction of 
the separable closure but in the topos theoretic structure we develop along the way. 

We define a profinite group and more generally profinite groupoid, and profinite 
category in any topos. If I-is a profinite category in 8 then we construct the topos 
gr of continuous r-actions. We generalize the profinite Galois group of the alge- 
braic closure of a field. In general it is a connected profinite groupoid. As shown in 
Section 3, below, it is Morita equivalent to a profinite group precisely when the 
separable closure of K in 8 can be constructed within the topos 8 itself. For 
example, any field in Sets has an algebraic closure in Sets so the profinite Galois 

groupoid is effectively equivalent to a profinite group. When there does exist a 
separable closure of K in 8 itself then the Galois groupoid is equivalent to the pro- 
finite group constructed in [6]. 
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Profinite categories in Sets are filtered limits of finite categories and so are 
categories with Compact, Hausdorff, totally disconnected topologies. The con- 
tinuous actions form a topos of ‘functor-sheaves’ over the category. (Details are in 
Example 5.1 below. Profinite categories in spatial topoi are discussed in 5.2.) It is 
our contention that several instances of spectra can be described as profinite 
categories. For example, the localization spectrum (= the space of prime ideals with 
the Zariski topology) can be thought of as a Boolean Space (the prime ideals with the 
patch topology, see [2, p. 2341) together with a category structure given by the 
ordering PI Q iff P2 Q. The ‘functor-sheaves’ (i.e. the continuous actions) then 
coincide with the sheaves over the Zariski topology. Curiously, the integral domain 
spectrum (see [5]) is the dual profinite category (with the same Boolean space of 
objects but with the ordering reversed.) 

Conventions. (1) Throughout this paper ‘field’ shall mean ‘geometric field’ (as in 

]4, P. 2151). 
(2) The topos B will always be assumed to have countable limits. It follows that W 

also has countable colimits. 
(3) When there is an equivalence relation on A x B then [a, b] denotes the equi- 

valence class containing (a, b). 
(4) Other terminology is generally based on [4], and, in the case of field 

extensions, [6]. 
(5) The proof of Theorem 1.1 is postponed until Section 4. I hope this will make 

the paper more readable. The basic constructions and some lemmas are included in 
the earlier sections so that the main results and the technical flavor can be obtained 
from reading Sections 1, 2 and 3. Section 5 gives some examples. 

We shall make frequent use of internal colimits, particularly over filtered 
categories. It is convenient at this point to make a definition and list three basic pro- 
perties of colimits. 

Definition. Let p: F+ C be a diagram over the filtered category C in a topos 8. 
Recall that FO, C, are the objects of F and C and po: Fo-+Co the object part of p. Let 
Q be the colimit and @ : Fo+ Q the canonical map. 

We say that F is a monodiagram, or that Q is afiltered union, if (~9, PO) : Fo+ Q x CO 
is mono. [In Sets this means that for each map i-j in C, the corresponding map 
Fi+Fj is mono where Fi = p-‘(i), SO Q c/J Fi.1 

Lemma 0.1 (properties of internal colimits). 
(i) Internal colimits are preserved by inverse image functors. 

(ii) Internal filtered colimits are left exact (i.e. if C is filtered then the colimit 
functor from 6T- to d is left exact). 

(iii) Letp: F-+ C be a monodiagram with colimit Q, and let t: X- Q be given. 
Then there exists a monodiagram R over C and map T: X-Fsuch that X = Colimit x 
and t = Colimit 7. [In Sets, Q =U Fi and Xi = t-‘(Fi) etc.] 
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Proof. (i) follows from the definition of an internal colimit as a coequalizer, see [4, 
2.24 or p. 511. 

(ii) is known, see [4,2.58 or p. 701. 
(iii) Since (4, pe) : Fo+ Q x Co is mono, we can let X-Xx Cc be the pullback of Fc 

along t x Co. It is straightforward to verify that 8 has the required properties. 

1. Profinite groups, groupoids, categories and actions 

The purpose of this section is to generalize the notion of ‘profinite group action’ 
to ‘profinite category action’. 

We start with 

Notation. By a finite category we mean a category with a finite set of maps. A 
groupoid is a category in which each map is invertible. A group is a groupoid with 
exactly one object. We let: 

Fin Cat = The category of all finite categories and functors, 

Fin Grpoid = The full subcategory of Fin Cat comprised of the 

groupoids, 

Fin Grp = The category of finite groups. 

Definition. By a profinite category, I-, in a topos 8, we mean a left exact functor r 
from Fin Cat to W. We say that r is a profinite groupoid if it factors through the 
forgetful functor from Fin Cat to Fin Grpoid which ‘forgets about’ all non- 
invertible maps. 

Recall that in [6] a profinite group in L is defined to be a left exact functor re 
from Fin Grp to b. Every such rc, gives rise to a profinite groupoid r where T(C) is 
the disjoint union Urc(Aut(c)) where c ranges over the objects of C and Aut(c) is 
the group of Automorphisms. A profinite category I- in G is said to be a profinite 
group if it arises in this way, i.e. if T(C) is UT(Aut(c)). 

Examples. (1) In Sets, a profinite category r can be represented by a category W 

with a compatible Boolean topology and enough continuous functors into finite 
discrete categories. Then T(C) is the set of continuous functors from W to C. (See 
Example 5.1 for further details.) 

(2) In any topos 8, each internal category D has a profinite completion, fi where 
B(C) is the object of functors from D to C (see Lemma 1.2 for further details). 

Definition. Let 0 be the empty category in Fin Cat. Then a profinite category ris 
regular (resp. trivial) if r(0) = 0, (resp. f’(0) = 1). Any profinite category can be 
represented as a regular profinite category glued to a trivial one. 
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Definition. An action (in Sets) is a pair (A,C) where C is a category and A is a 
fun&or from C to Sets. (We use terminology which emphasizes that actions genera- 
lize the notion of group action). (A, C) is a finite action if C is a finite category and 
.4(c) is a finite set for all c in C. We sometimes write A, for A(c) and call it thefiber 
of A over c. The action (A, C) is a group action (resp. groupoid action) if C is a 
group (resp. groupoid). We also say that (A, C) is an action over C. 

If (A, C) and (B, C) are actions over C then a C-equivariant map, m:A+B, is a 
natural transformation. 

Definition. If f :D+C is a functor and if (A, C) is an action over C then 
f”(A, C) = (Af,D) is the induced action over D. 

An action map from (A, C) to (B, D) is a pair (m,f) where f : D- C is a functor 
and m : Af + B is D-equivariant. We also say that (m, f) is an action map over f. We 
let: 

Fin Act = The category of all finite actions and action maps. 

The notation Fin Act/Grp (resp. Fin Act/Grpoid) denotes the category of finite 
actions over groups (resp. groupoids). 

Definition. (A, C) is an internal action in the topos E if C is an internal category and 
A is an internal diagram. The object of all action maps between two internal actions 
is easily defined. 

Definition. By a profinite action in a topos G we mean a left exact functor: 

X: Fin AcPP--t 8. 

There is a canonical left exact embedding: 

I: Fin Cat + Fin ActOP 

given by I(C) = (0, C) where 0 is the empty action (or functor sending each object to 
the empty set). Therefore if X is a profinite action then T=XI is a profinite 
category. We say that X is aprofinite action over r, or even that (X, r) is a profinite 
action, when XZ=T. 
X is said to be a profinite groupoid action (resp. profinite group action) when 

r= XI is a profinite groupoid (resp. profinite group). 
Finally, if X and Y are profinite actions over r then m :X+ Y is a r-equivariant 

map if m is a natural transformation such that ml is the identity. 

Notation. Let X be a profinite action over r and let (A, C) be in Fin Act. Then 

7r: X(A,c)+r(c) 

shall generally denote the canonicalprojection, X(i), arising from i : (@I, C)- (A, C). 
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Definition. Let I- be a profinite category in a topos 6. Then br is the category of 
profinite actions over I- and r-equivariant maps. 

Theorem 1.1. Let I- be a profinite category in the topos 8. (Recall that d is assumed 
to have countable limits.) br is then a topos over 8. The geometric functor 6’-r t” 
sends X to X(1,1). 

Proof. The proof is banished to Section 4 of this paper. 

Comment. It is known that if Tis a profinite group in Sets then the category of con- 
tinuous r-sets is a topos. Theorem 1.1 generalizes this in two ways: l-can be a pro- 
finite groupoid, or profinite category and the underlying topos need not be Sets. If r 
is a profinite category in Sets then Setsr is the category of functor-sheaves discussed 
in the introduction (see also 5.1 below). If D is an internal category in a topos d 
then there are topoi bD and Gd (see example 2, above). Generally, these topoi differ, 
Lemma 1.2, below, shows one case where they coincide. 

Definition. Two profinite categories r and r’ in t’ are Morita equivalent if gr is 
naturally equivalent to 8’. In Sets every connected profinite groupoid is LMorita 
equivalent to a profinite group, but this is not true for all topoi. See 5.4 below. (A 
profinite category is connected if it preserves coproducts.) 

Example 5.6 shows that Morita equivalence is weaker than natural equivalence. 

Lemma 1.2. Let D be an internal category in R and let d be its profinite completion 
(as in example 2, above). Suppose that D is a finite category in 8 in the sense of 
having ‘at most n morphisms’ where n is an ‘ordinary' positive integer (in Sets). 
(That is, the object of morphisms of D is to satisfy the geometric condition, for all 
x0, xl, . . . ,x,, of v {xi = Xj 1 i < j} .) Then bD is equivalent to 8’. 

Proof. Let F be a diagram over D. We have to construct a profinite action Paver 
B. Since (F, D) is an internal action in t” we may define p(A, C) as the internal object 
of action maps from (A, D) to (F, D). Conversely, let X be a profinite action over B. 
Define X as the object of all [c, d, a] where d E Obj(D), c E X(A, C), for some (A, C) 
and a CA(C) where c= n(C)(d). Further regard [& d,a] = [[‘, d,a’] if c~ X(A, C), 
C’E X(A’, C’) and thereexists (m, f): (A, C)+(A’, C’) with m(a) =a’and X(m, f)(C’) = 
C. Then X is a diagram over D with [c, d, a] lying over d. 

There is a canonical map (p)-+F given by [c, d, a] -+ f(a) where t;= (m, f). There 
is an analogous map X+(X)*. Given <E X(A, C) we must find a member of 
Hom[(A, C), (X, D)]. Let f: D+ C be n(c), then for each d E D let c = f(d) and map 
a E A(c) to [c, d, a]. That these maps are isomorphisms can be verified in Sets, which 
suffices in view of [g]. 



12 J. F. Kennison 

2. The profinite Galois groupoid and the separable closure 

Let K be a field in a topos 8. We wish to construct the separable closure of K. The 
main idea is to construct the generic separable polynomial over K, for K a field in tu 
and split it by the procedure, given in 161, which we now review: 

Splitting Construction. Let P be a separable polynomial of degree n over a field K 
in a topos 8. Let K(r) be the ‘splitting ring’ of P, obtained by formally adjoining to 
K a complete set of roots P= {I-,, . . . ,r,,) for P. Then S,, the group of permutations 
of {l,..., n}, acts on K(P) so K(P) lives in gsn (and is the generic regular ring 

extension of K for which there is a distinguished root set for P). 
K(F) is always regular when P is separable (see [6]) so we make it into a field in the 

topos of sheaves over B where B is the Boolean algebra of idempotents of K(P). Note 
that the topos of B-sheaves, denoted Shv(B, Lsn) is constructed in 8’” where B lives. 
We need to interpret this construction in terms of a profinite groupoid. 

Lemma 2.1. Let B be a decidable Boolean algebra in 8. Let H be a finite group 
which acts on B as a group of Boolean homomorphisms (so B is still a Boolean 
algebra in gH.) There then exists a profinite groupoid r on 8 for which G’is equi- 

valent to Shv(B, aH). 

Proof. By an H-partition of length k we mean a k-tuple 6= (b,, . . . , bk) where each 
b; E B is nonzero, Vbi = 1, biAbj = 0 for i sti and for each h E H and each i there is a 
i with h(bi) = bj. 

Let W(k) be the object of all H-partitions of length k (so W(k) r Bk), and let W be 
the object of all H-partitions, so w=U W(k). 

Each H-partition 6 can be regarded as a groupoid with Hom(bi, bj) being the set 
of all (h, b;, bj) with h E H and h(bJ = bj. Therefore G, the generic H-partition, is 
also a groupoid (in Bw, which denotes the topos of objects in d over W, since G is an 
H-partition there). By using Lemma 1.2, we can identify G with its profinite 
completion G [since bw is the disjoint union of gWck)]. 

Therefore, for each finite category C, we have that c(C) is the object of functors 
from G to C hence the object in bw with Fun(6, C) ‘lying over 6~ W’. Further note 
that W is filtered by refinement and if 6 if refined by 6’ there is an associated 
functor 6’-6 and hence a map Fun(6, C) to Fun(6’, C). In this way e(C) becomes a 
diagram over the filtered W. We define f(C) as the filtered colimit of C?(C). Then I- 
is left exact [p. 70 of [4], or Lemma O.l(ii)]. 

Let X be a profinite action over f. Then for every finite action (A, C) there is a 
projection n:X(A,C)+T(C). By Lemma 0.1 (iii), X(A,C) can be regarded as a 
diagram over W. That is T(C) =UHom(6, C) and we can write X(A, C) = 
UX(~,A, C) where x(~,A, C) is n-‘(Hom(6, C)). So X(A, C) is an object over W 
with ‘fiber’ x(~,A, C) over 6~ Wand X becomes a profinite action in Ew over G. 
By applying Lemma 1.2, to each W(k), we can regard X as a diagram over the 
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category G, with x(6) a diagram over 6 for each 6~ W. (We let x(bi) be the fiber 
over bi E 6.) Finally, note that the family of diagrams, X(6) over 6 is filtered and has 
the following special property: Suppose that 6’ refines 6 with i : 6’-6 the refinement 
functor. Then any action map (m, f) from (A, C) to (x(6’), 6’) must factor through 
(X(6),6) iff f :6’+C factors through i. It is readily shown that filtered families of 
diagrams with this special property correspond to profinite actions over r. On the 
other hand let &6,x) = fl {X(bJ 1 bi E 6). That the canonical map P(6.X) to 
P(~‘,X) be an isomorphism is readily seen to be equivalent to the special property. 
[Note that P(6,x) is the set of action maps from (Hx 6,6) to (x(6), 6) where group 
multiplication makes H x 6 into an action over 6.1 Let P(X) be the colimit of ~(6, X) 
for 6~ W. Then P(X) is easily seen to be the global sections of a sheaf over B. For if 
de B let W, be the object of H-partitions which refine {d, -d} and let: 

P(6,X))d=n{X(bi))biE6,biId for 6E Wd} 

and P(X) j d= Colim p(6,X) 1 d. This construction of P(X) 1 d (with ‘d’ as index) 
takes place over B and produces the required sheaf. Conversely, given the sheaf, the 
steps can be reversed to produce the action. 

Corollary. If P is a separable polynomial over K in a topos d then there is a pro- 
finite groupoid r,, constructed as above, such that the generic splitting field of P 
lives in grp. 

Proof, It suffices to show that B is decidable where B is the Boolean Algebra of 
idempotents of K(r). This follows since b E B is nonzero iff. 

V{a(b)lacS,} = 1. 

(Here the sup is taken in the Boolean algebra B). 

Construction of the profinite Galois groupoid - The generic separable polynomial 

Now that we have discussed how to split a single polynomial we can determine 
how to split all separable polynomials simultaneously. Recall that K is a field in a 
topos 8. We let n-POL Y be the object of separable, manic polynomials of degree n 
in one indeterminate c, with coefficients in K. Note that n-POLY can be viewed as a 
subobject of K” with (al, . . . a,) corresponding to r + a,r- * + a.- + a,. [The con- 
dition that (a,, . . . . a,) corresponds to a separable polynomial, P, is geometric, since 
the Euclidean algorithm applied to P and P’ must produce a constant g.c.d. 
(greatest common denominator) in n steps.] We define POL Y as Un-POLY (for 
positive integers n). Then POLY is a directed, partially ordered set with Pr Q iff P 
divides Q. We can construct the sup, PvQ (or least common multiple of P and Q) 
since PVQ is PQ/D where D is the g.c.d. constructible by the Euclidean algorithm. 
Note that PvQ is separable if P and Q are separable. 

The generic separable polynomial lives in GpoLy. [We identify K with the 
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‘constant field’ KX POLY in BPOLY. The ring of polynomials with coefficients in K 
is then K[<] x POLY. A typical element of P 3poLy can be envisioned as an indexed 
collection {X,} with P varying in POLY. The distinguished polynomial is the 
element of K[<] x POLY which ‘looks like P’ over P. To be precise it is the diagonal 
map POLY+K[r] x POLY which is an element (as POLY is the terminal object of 
gpoLy). This polynomial can be shown to be separable, since the Euclidean 
Algorithm can be described geometrically.] 

Splitting the generic polynomial. The splitting field construction discussed at the 
beginning of this section can now be applied in the topos epoLy to the generic separ- 
able polynomial. By the corollary to Lemma 2.1, there is a profinite group f and a 
splitting field K” in bpoLy)r (To meet the hypotheses, the corollary should be 
applied independently to each component, &,,;I-poLy.) 

To get the separable closure of K and the complete profinite Galois action we 
want to ‘glue together’ all the splitting fields of each separable polynomial and ‘glue 
together’ all of the actions off. But POLY is a directed set and once we show that f 
and K# are diagrams over POLY we can form colimits. To do this, regard Tas an 
‘indexed collection’ {f,} of profinite groupoids for PEPOLY. We must find a 
canonical natural transformation rR+fQ whenever R divides Q. Let R be a 
polynomial of degree n with root set P = {r,, . . . , r,} and Q of degree m with root set 

4= (41, . . . . qm}. Let BR (resp. BQ) be the Boolean algebra of idempotents of the 
splitting ring K(P) (resp K(g)). Then S, acts on r and BR while S, acts on 4 and BQ. 

Let t range over the set of order-preserving one-to-one maps (in Sets) of ( 1, . . . , n} 

into Il...., m}. Since K(q) becomes a field over BQ and since R divides Q and R and 
Q are both separable, the roots of R may be found among the roots of Q. For each 
map t, let b(t) be the idempotent in BQ which is the truth value of “qlCljr . . . ,qrCn) are 
the roots of R “. Then, clearly, {b(t)} is an &partition of BQ. This enables us to 
define the desired map rR-+rQ. Let C be a finite category and let IerR be 
represented by a functor 6-C where 6 is an &-partition of BR. Each t induces a 
natural isomorphism from K(P) to K(q>b, (sending Ti to q[(;)) and so 6 gives rise to a 
partition of each br, hence, letting t vary, to an &-partition 6 of BQ. The functor 
6-C can readily be lifted to a functor b-C. This gives us the map from fR(C) to 
TQ(C). These maps compose compatibly because we always choose order-preserving 
injections of the roots of R to those of Q. We define r to be the internal colimit of 
this filtered diagram. r is then a profinite groupoid. 

The separable closure. We must locate the field K in E’which is to be the separable 
closure of K. For each separable polynomial P, let Kp be the field in Shv(Bp, 6”s”) = 
8p which splits P (so (Kp} lives in d poLy). Suppose that R divides Q and that (A, C) 
is a finite action. There is a natural map K&l, C)+ K&4, C). But co K&4, C) 

consists of an S,-partition 6, a functor f :6-C and, for each bi, a map A(cJ+ 
K(P)b; (where f(bJ = c;). Using the above partition {b(t)} of BQ and isomorphisms 
K(P) -K(q)b(t) there is an obvious lift of C from K&l, C) to K&4, C). As before, 
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this defines a diagram over POLY and we let K be its filtered colimit. Then: 

Theorem 2.2. (I?, 8’) is the separable closure of K where R,r are as constructed 
above. This is an example of a spectrum in the sense of Cole (see [4, Theorem 6.581). 

Proof. I? is readily shown to be a separably closed, separably algebraic extension of 
i*(K) where i*: &+ 6’ is the obvious functor. For example to show that i? is 
separably closed (given that it is separably algebraic over K) it suffices to show that 
every separable polynomial P in K splits in R. But if U is the subobject of 1 where P 
splits, then interpreting I/ as a subobject of r in dpoLy we see that U=T for all 
R E POLY for which P divides R. In the colimit, U= 1. 

We must obtain the following adjointness property: Let p*: b-+ 9 be an inverse 
image functor and let p*(K) G L be a separably closed extension of K. We need to 
find a lift p*: 6’+ 3 with the right properties, and show that it is unique to within 
natural equivalence. The idea is to use the fact that each KR in &“R is a spectrum and 
to glue together all of the resulting lifts. This immediately gives us uniqueness since 
the lifts must be unique over n-POLY (by the splitting of the generic polynomial of 
degree n) and inverse image functors preserve internal colimits [Lemma 0.1(i)]. For 
the existence we must take some care to show that the lifts can be compatibly glued 
together. For convenience we first consider the case where there exists a separable 
closure L of K in F. We must find g*: dr + dand g,: &d&f with the right properties. 
It suffices to give a specific geometric description of g,(R) for each R E POLY. For 
example: 

where Mb is the object of homomorphisms m from K(P) to L for which m(b) = 1. 
For the general case, given p*: 8+ 9 we can lift p* to an inverse image functor 

from br to @and apply the above method. 

3. The case when a separable closure exists in 8 

Let K be a field in a topos 6. The profinite groupoid, r, of the previous section is 
then called the profinite Galois groupoid of the separable closure of K. In Sets, we 
expect to get a profinite Galois group and the question arises, “In what sense can r 
be regarded as a group?” First of all, Tis clearly a connected groupoid (since S, acts 
transitively on each S,-partition 6 of B). In Sets, every profinite connected groupoid 
is Morita equivalent to a profinite group. 

From another point of view, suppose that there were a separable closure L of K 
already existing in G. Then as shown in [6], there is a ‘Galois theater of action’ 
associated to L and a profinite group r associated to this theater. The relation 
between rand Tis that they are Morita equivalent. In this section we prove that ris 
Morita equivalent to a profinite group iff such a separable closure L of K does exist 
in 8. 
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Proposition 3.1. Let P be a separable polynomial over K and let T(=Tp) be thepro- 
finite groupoid of the splitting field of P so that Shv(B, @) is isomorphic to bras in 

Lemma 2.1. 
Suppose that there exists in 6 a field extension L of K in which P splits. Then 

there is a profinite group rO which is Morita equivalent to I7 Conversely L exists if 

r, exists. 

Proof. Let K(r) be the splitting ring of P, as before, so that S, acts on the left on 
K(r) where n is the degree of P. We may as well assume that L is generated as a field 
extension of K by the roots of P. Let M be the object in I of K-ring homo- 
morphisms from K(P) to L. Then S, acts on Mon the right by composition. It is easy 
to verify (as it can be done in Sets) that for every ml and m2 in M there is a unique 
o E S, with mIa = m2. Also note that 8m E A4 (or that it4 has ‘global support’ or that 
IV+ 1 is epi). 

Recall that B is the Boolean algebra of idempotents of K(r) and that S, acts on B 
on the left. Let 6 be an S,-partition of B. Then, for each meA there is a unique 
bie 6 for which m(bJ = 1. We write bi = Supp(m) and SO, for each 6 we have 
defined: 

supp : Ad+ 6. 

Note that Supp(mL-‘) = J. Supp(m) for I E S,. 
We shall regard S, as a constant object in E and let S, act on itself by conjugation 

[so (A, a)-+M-‘; the notation Aa shall always denote composition, so this 
conjugation action will be denoted by lal-‘1. This produces an object S,, in ESn. 
Observe that S, is a group in ES”. Then: 

M@S,,= (m~o~m~M,cr~S,, with ml@o=m@Aul-I}. 

For each S,-partition 6 we define 

~(6)= {m@aEM@S,,la fixes Supp m}. 

An easy check shows that M@S, is a group under (m@a)(m@r)=m@(o@ and 
that ~(6) is a subgroup (the verification uses the fact that S, acts in a simple 
transitive manner on M). We shall continue this proof after proving the following 
lemma: 

Lemma 3.2. Let 6 and H(6) be as above. Regard 6 as a groupoid (as in the proof of 
Lemma 2.1). Then the groupoid 6 is Morita equivalent to the group H(6). 

Proof. [In this proof we shall treat 6 as a constant S,-partition, meaning that 
6= (b,, . . . . bk} where each bi is an actual element or map bi: 1 +B. As usual, this 
does not affect any geometric consequences since the generic S,-partition of length 
/c, which lives in BWtk), is a constant &-partition. Furthermore, we shall apply the 
lemma directly to tiwCk).] 
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Let X be a diagram over 6 and let X(b;) be the part of X lying over bi. So 
X=uX(b&, and, since X is fibered over 6, it follows that S, acts on X on the left. 
[If a(bJ = bj then CJ maps X(b,) to X(bj).] Let 

M@X={m@xlm~M,x~Xwith ml@x=m@Ax) 

and define 

X* = {m@ m 1 x E X(bJ for b; = Supp(m)}. 

Then H(6) acts on X* by (m@ a)(m@x) = m@ ox. 
Conversely, suppose that H(6) acts on Y in 8. Then H(6) acts on Y x M so that 

(m@o)(y, m) is ((m@o)y, ma). [It is an exercise manipulating conjugations to show 
that all of the above operations really are well defined.] Let Y# be the object of 
k&@-orbits of Y x M. [That is Y x M modulo the equivalence relation induced by 
H(@.]So Y#={[y,m]Iy~Y,m~Mand[y,m]=[(mOa)y,ma]).Definep:Y#~6 
by P([y,m])=Suppm. If AES” then A[y,m]=[y,mA-‘1. A straightforward 
verification shows that Y# is a well-defined diagram over 6. 

To prove that X=(X*)” let XE X(bt) be given and choose m EM with Supp(m) = 
bi and define @(x) = [m@x, m]. This is well defined since such m exist and if ml, m2 
in M have Supp(mi) = Supp(m2) = bi then [mi@x, ml] = [m&Jx, m2]. (We can find J. 
with m , =m2A, then m,@AEH(b) etc.) So @ is uniquely determined and can be 
readily shown to be an isomorphism from X to (X*)“. 

Similarly w: Y+(Y#)* is an isomorphism where ~(y)=m@[y,m]. 

Proof of Proposition 3.1 (continued). Let W be the object of all S,-partitions of B 
with 616’ iff 6 is refined by 6’. For each finite group G let f(G) be the filtered 
colimit of Hom(Zf@), G). If X is in gr then X is a filtered colimit of objects of &j@) 
(by applying (iii) of Lemma 0.1) which is equivalent to 8. But a filtered colimit of 
objects of B6 is an &-sheaf over B (as in the proof of Lemma 2.1). The steps can be 
reversed to set up the required equivalence between br and Shv(B, Ssn). The 
converse, that if Shv(B, @) is equivalent to a category of profinite actions over a 
profinite group is not needed now and will follow from Lemma 3.4. 

Theorem 3.3. Let K be a field in a topos 8. Let K in dr be the separable closure K as 
in Theorem 2.2. Then the profinite groupoid r is Morita equivalent to a profinite 
group iff there exists in E a separable closure L of K. (In this case r is Morita 
equivalent to 17, the profinite group associated with Galois theater of L/K, as in 161, 
and L lives in gH and can be regarded as the generic separable closure of K.) 

Proof. Suppose that such an L exists. For each separable polynomial P let LpC L be 
the K-subfield generated by the roots of P. Let r,, be the profinite groupoid for 
which brP is equivalent to Shv(Bp, @n). Then each r, is Morita equivalent to a 
group by Lemma 3.2 and the colimit over POLY of (r,,} is still equivalent to the 
colimit of the profinite groups as constructed in Lemma 3.2. 
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Conversely, suppose that r is Morita equivalent to a profinite group H. Then 
there is a separable closure ~5 of K in fiH, and, by Lemma 3.4 below, an inverse 
image functor U from GH to d for which L = U(L) has the required properties. 
Finally the Galois theater of L/K is represented by a left exact functor 
L’: Fun(T,Sets) to R (as in [6]). This produces a profinite action by the restriction 
functor r from Fun[Fin Act, Sets] to Fun[T, Sets]. The composition is equivalent to 
the functor from Fun[Fin Act, Sets] induced by the profinite action i; in tH. (Given 
a theater map from (A, G) to L there is a partition fine enough to preserve all distinc- 
tions which are polynomial determined as shown in [6].) 

Lemma 3.4. Let r be a regular profinite group on 8. Then there is an ‘underlying 
object functor’ U: dr+ C: which is an inverse image functor. Moreover, if i *: 6--, Gr 
is the 'constant' functor then Ui* is equivalent to the identity on 8. [If r is an 
ordinary finite group then an object of b’can be regarded as a pair (X, I_Y) with X E 8 
and CI: r x X an action. In this case, U(X, ar) =X.] 

Proof. Let XE 6’ be given. Let U(X) be the canonical colimit of all X(A, G), 
where: a E A, (A, G) E Fin Act/Grp and X(,4, G), = X(,4, G). We can regard U(X) as 
the object of ail [a,x] where acA, XE X(A, G) and with [a,x] = [b, y] if there is an 
action map (m, f) from (A, G) to (B, H) such that m(a) = b and X(m, f)( y) =x. So 
U(X) is a quotient of u(A x X(A, G)). 

To define a right adjoint V for U, let E E d and (A, G) E Fin Act/Grp be given. 
Define 

~(A,G)={(i,f)lN-(G),f :A-+Yl. 

If (m, d): (B, H)+(A, G) is an action map then define &n, d)(c, f) = (T/d)(& fm). 
To show that ,!? is in 6’it suffices to show that J!? is left exact and that ,!?(@, G) is 
T(G). Both of these verifications are straightforward. We define V(E) = f?. Clearly 
V: S-8’. [If j:E-*Fis a map in 6 then Vu)(c, f)=(z, jf)]. A ‘member’ of UV(E) 
is an equivalence class [a, c, fl with a E A, c E T(G) and f : A -+ E. Define E : UV(E)+ E 
so that e[a,5; f] = f(a). Each map t: U(X)+E lifts to a map 7:X-+ V(E). We must 
define $A, G) : X(A, G)-+l?(A, G). If x E X(A, G) then n(x) E f (G) and x determines a 
map f :A+E by f(a) = t[a,x]. Let T(x) = (n(x), f). A direct check now shows that E is 
a back adjunction. Since Ui * is easily shown to be equivalent to the identity functor, 
the lemma will be proven when we show that (I is left exact. To do this we shall 
represent U as a colimit over an appropriate filtered diagram. Recall that limits in br 
are taken ‘over r’ - they do not coincide with limits in the category of all functors 
from (Fin Act/Grp)OP to 8. This gives us a clue to finding the right filtered diagram, 
d. We let the objects of d be the disjoint union of all T(G) for (a representative set 
of) all finite groups G. A map from c~f(G) to C’ET(H) is a 3-triple (f, 5; C’) where 
f :H-+G and r(f)(c’) = c. (So d is a comma category). 

For each finite group G let (G, G) be the action where d = G and where G acts on 
d by multiplication. 
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Let XE #be given. Regard X as a diagram over d with X(d, G) lying over T(G). 
If ~EX(G,G) with n(x)=c~T(G) and if f :H-+G and ~‘ET(H) are such that 
(f, c, 1;‘) : c-c’. We must construct (f, <, c’)(x) E X(@ H). But (6, H) is an action, via 
f :Zf+G, and is the pullback (in Fin AcP) of (6, G), (0.H) and (0, G). Since X 
preserves this pullback there exists x’e X(G,H) lying over c’ and x. But there is also 
an action map J from (fi, H) to (G, H) and we define (f, [, c’)(x) as X(f)(x’). 

We claim that U(X) is the colimit of this diagram over U. The main step is that if 
[qx] E U(X) with a EA and XE X(A, G) then there exists a unique G-equivariant 
map C from (G, G) to (A, G) which sends the identity, e (in G) to UEA. Then [a,~] is 
equivalent to [e, JJ] where y = X(r)(x) and [a,~] can be represented by y E X(G, G). 
Finally, limits in Jr correspond to limits over d so U is left exact and the lemma is 
true. 

4. Proof of Theorem 1.1 

Recall that r is a left exact functor from Fin Cat to g. To show that 8’is a topos 
we shall ‘glue together’ all the finite actions that are involved. We need the following 
theorem of Wraith’s from [lo]. 

Wraith glueing construction. Recall that G has countable limits. Let d be a 
countable category (i.e. d has a countable number of morphisms.) For each object 
dud let 6(d) be a topos over G. For each map h : c-d in d let 6(h) : C?(C)- 4(d) be a 
functor. Assume that each R(d) has, and each R(h) preserves, countable limits. Then 
the topoi {b(d)} can be glued together to form a topos G&l) where a glued object X 
(in Gl(d)) consists of an object X(d) in G(d) for all d and for each h:c*d a map &, 
from X(d) to &(h)[X(c)] such that if k =jh then <, = t”u)(<h)rj. If each functor B(h) 
has a left adjoint, h*, then by adjointness <,, corresponds to & from h*(X(d)) to 
X(c). The conditions on the r’s corresponds to &= chh*(Cj) whenever k=jh. If the 
8(h) functors are geometric, then Gl(d) is a topos over 8. [The proof of this is given 
in [IO], particularly the last paragraph. The essential steps are also given in 
[4, p. 109-l lo]. As noted in [lo], the result extends to uncountable cardinals.] 

Proof of Theorem 1.1. Given T:Fin Cat+ d let d =Fin Cat. For each CE~ let 
g(C) be (B,,,,)c, that is the topos of all functors from C to 8r(c,, the category of 
objects over T(C). For each h: CdD in d let h *: J(C)- a(D) be the corresponding 
geometric functor. It is easier to work with the inverse image part, h*, which is 
essentially pulling back along T(h). So we can apply the Wraith glueing construction 
to get a topos G&l). So XE Gl(d) means X(C) E 8(C) for all C and there are maps 
C;h from h *(X(D)) to X(C) for each h : C-D etc. We need to construct a topology on 
Gl(d) for which we need: 

Definition. Let h : C+D be a functor between finite categories. Let A be a C-action 
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(i.e. diagram over C) and B a D-action in a topos .E Let ho(B) be the induced C- 
action. Then a C-equivariant map C;: ho(B) +A is h-universal if for every D-action E 
in 3and every C-equivariant map f : hO(E)+A there is a unique D-equivariant map 
$ : E- B for which rho(J) = f. 

The glued object X has the action lifting property (or ALP) iff &, is h-universal 
for every h : C-D. [Note that ch: h*(X(D))+X(C) and h* can be regarded as h”(h’) 
where h’ is pulling back along f(h).] To complete the proof of Theorem 1.1 we shall 
find a topology on Gl(d) whose sheaves are precisely the glued object with ALP and 
show that these in turn are equivalent to profinite actions over r. 

Lemma 4.1. Let C and D be finite categories and let H: C+ D be a functor. Let A be 
a C-action and B a D-action in a topos .FF Let c: hO(B)-*A be C-equivariant. Let 
I/ 5; A be a C-subaction. Then there exists a largest D-subaction V of B for which 

r(hO( V)) G U. 

Proof. y E V(d) iff for all L : d- h(c) in D we have c,@(r)) E U(c). Since D is finite, 
this is easily constructed. 

The topology J. Let X be a glued object and let U c X be a subobject. For every 
h: C-D let V,, be the image in X(D) of the largest subobject of h/(X(D)) mapping 
onto U(C). Define 0 so that U(D) = U Vt, where h ranges over all functors into D. 

Then 0 is a subobject of X and CJ c 0 and the passage from U to 0 is preserved by 
pullbacks. Let U(“) be defined by iterating this process n times and let 0 be the 
U I/(“). Because the categories C and D are finite, it follows that fi= 0 and CJ+ 0 is 
a closure operator corresponding to a topology Jon Gl(d) (see [4, p. 771). Moreover 
U is J-closed iff U= 0. 

Lemma 4.2. Let A be an object in b(C). [So A is a C-action over T(C).] Then A 
freely generates a glued object U together with a C-equivariant map A + U(C) such 
that C-equivariant maps from A to X(C) correspond exactly to maps in Gl(A) from 
u to x. 

Proof. Let U(K) be the disjoint union of f*(A) where f ranges over the functors 
from K to C and f * is essentially pulling back along f-(f ). 

Lemma 4.3. Let X be in Gl(A). Then X has ALP iff X is a J-sheaf. 

Proof. If X has ALP then a straightforward argument shows that (for UC Y) maps 
U-+X have unique lifts to maps 0-X. 

Conversely, let X be a J-sheaf. Let h: C-D be a functor. Let W be a D-action in 
8&-) with projection n: Wdf(C). Let ho(W) be the induced C-action. Let 
t: h”( W)-X(C) be C-equivariant. Let U be the glued object freely generated by 
ho(W) as a C-action in 8,-co. Let V be the glued object freely generated by W, the D- 
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action in ~?~(n, with projection T(h)n from W to f(D). Then t corresponds a map 
U-+X. Also there is a canonical map U- V. It is readily shown that c/c V and 
V= 0. So there is a unique map V+X extending the map corresponding to T. This 
gives rise to the required map from W to X(D). 

Canonical limit construction. Let C be a finite category. For each object c in C let 
C(c) be the action over C for which C(c)(d) is Hom(c, d). If k: cl +c2 is a morphism 
then k*: C(c++(c,) given by composing with k on the right is C-equivariant. 

Let A be any finite action over C. We define a canonical diagram in Fin Act with 
vertices C(c), = (C(c), C) for each a E A(c) and arrows k* : C(C~)~-+ C(ci), whenever 
k: cI+c2 with k(a) = b. We add a base vertex (E, C) together with the unique C-equi- 
variant arrrow. (0, C)-C(c), for each a E A(c). Then (A, C) is the cofimit in Fin Act 
of the canonical diagram. So if X a profinite action then X(,4, C) is the limit of X of 
the canonical diagram. It follows that X is determined by the values of X(C(c), C) 
and X(0, C). 

Proof of Theorem 1.1 (continued). In view of Lemma 4.3 it suffices to equate 
profinite actions over r with glued objects having ALP. Let X be a profinite action 
over r. We construct a diagram X(C) over C in P JT(c) so that for each CE C the fiber 
X(C)(c) of this diagram is X(C(c),C). The projection onto T(C) is obtained by 
applying X to the unique C-equivariant map from (0, C) to (C(c), C). If A : cI+c2 in 
C then X@*) goes from X(C)(c,) to X(C)(Q). Clearly, X(C) E &(C) [as used in the 
definition of Gl(d)]. 

Now let h: C+D be a functor. For each dE:D we have a D-action D(d) which 
gives rise to the C-action ho@(d)). h*(X(D)) is the C-action in grcc, which has fiber 
X[hO(D(d))] over c (where d = h(c)) since ho@(d)) together with (0, C), (0, D) form a 
pullback in Fin Actor and preserves pullbacks. There is a map from C(c) to ho@(d)), 
given by h, and applying X to this action map for each CE C we obtain a map we 
shall call: 

This defines a glued object (the details are straightforward.) Before finishing the 
proof, we note a critical property of the diagram X(C): 

Lemma 4.4. Let X be a profinite action over I- and let X(C) be the C-action in &,-ccJ 
defined above. Let (A, C) be any finite action over C. Then X(A, C) is equivalent to 
the object of C-equivariant maps in ErccJ from (A, C) to X(C). 

Proof. X(A,C) is the limit of the canonical diagram and so is equivalent to a 
subobject of the product fl {X(C(c)) ( a E A(c)). The subobject corresponds precisely 
to the subobject determined by the C-equivariant maps from (A, C) to X(C). 

Proof of Theorem 1.1 (concluded). The glued object {X(C)} associated to each 
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profinite action X, over f, is now shown to have ALP. Let (B,D) be a finite action 
over D and let t from hO(B,D) to X(C) be C-equivariant. Then t corresponds to an 
‘element’ of X(h”(B,D)) in the sense of Lemma 4.4, with (A, C) = h’(&D). But 
X(hO(B,D)) = hO(X(B, D)), as Xpreserves pullbacks, and this is ho of the object of D- 
equivariant maps from (B,D) to X(D) (by Lemma 4.4 again). This sets up the 
required equivalence, showing that {X(C)} has ALP. 

Conversely, let Y be a J-sheaf, that is, a glued object with ALP. We regard Y as a 
profinite action by defining Y(A, C) as the object of C-equivariant maps from (A, C) 
to Y(C) as suggested by Lemma 4.4. [Note that Y(A, C) is an object of E with a 
projection to T(C).] Using the ALP, we can show that Y is functorial. A straight- 
forward verification (using Lemma 4.4) shows that the passages from profinite 
action to J-sheaf to profinite action and from J-sheaf to profinite action to J-sheaf 
are naturally isomorphic to the identities. 

5. Examples and observations 

5.1. Profinite categories and actions in sets. Let T:Fin Cat-Sets be a profinite 
category. In the usual way, form the comma category diagram with the following set 
of vertices: 

{(C,x)ICEFin Cat; x~r(C)}. 

(along with the obvious maps). Let I?denote the filtered limit of this diagram. It is 
readily shown that f= is a category with a compact, totally disconnected, Hausdorff 
topology, and is a category object in compact spaces. As a near converse, any 
category object in compact spaces, with enough continuous functors into finite, 
discrete categories to separate morphism is uniquely of the form P where r(C) is 
the set of continuous functors from P to C. 

Let X:Fin Act*p-+Sets be an action over r. As above, we represent X by its 
canonical limit in Sets. Then X is a filtered limit of finite actions over finite cate- 
gories. But as shown in [7], any filtered limit of sheaves with finite discrete bases is a 
sheaf over the compact limit of the finite discrete bases. So X can be shown to be 
both a diagram and a sheaf over the profinite category I? Moreover, X must satisfy 
the following ‘continuous action’ condition: Let G be an ultrafilter of morphisms of 
fand let F. (resp. Fi) be the ultrafilter of domains (resp. codomains). Let f = Lim F, 
d = Lim Fo, r= Lim Ft. so f :ddr in C. Let x~X(d) be given. By choosing a local 
section through x at d we can get an ultrafilter F(x) of values f&x,) for f, E F and x, 
in the local section through x. It is required that f(x) = Lim F(x). It can be shown 
that a profinite action over P is precisely the same thing as a functor-sheaf over P 
satisfying the continuous action condition. 

5.2. Spatial profinite categories. Let & = Shv(X) where X is a topological space. 
We say that E is a ‘compact space over X ’ if E is a topological space with projection 
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p : E-X such that E is ‘as compact as X is’ (see [6]). This means, that given an ultra- 
filter U on E and a limit point x of p( (/) there must then be a unique e E E which is a 
limit of U and for which p(e)=x. In particular each fiber p-‘(x) must be compact 
and Hausdorff. Then a profinite category over X is a category object E in the 
category of all compact spaces over X for which each fiber p-‘(x) is a profinite 
category (i.e. has enough continuous functors to finite discrete categories.) 

5.3. Profinite categories and Boolean algebras. Every profinite category 
I-: Fin Cat+ 6 has an underlying Boolean algebraic structure. We can extend r 
uniquely to a functor from Fun(Fin Cat OP, Sets) to G (i.e. see [2] or [g]) and map 
Fin Set to this functor category as follows: If FEF~~ Set then define F(C)= 
Hom(C,,,F) where C, is the set of objects of C. This gives us a left exact composite 
functor: 

Fin Set+Fun[Fin CatOr’, Sets] + t” 

which determines a Boolean algebra in g, the Boolean algebra of objects of r. 
Similarly, using Ci instead of Ce, we can define the Boolean algebra of morphisms 
of r. 

5.4. Maximally algebraic fields. Let C be the category consisting of two objects 0 
and 1 with non-identity maps tn : O-+ 1 and y : 1 + 1 such that ym = m and y2 = 1. Let 
d = Fun(C, Sets) and represent an object of 8 as a pair (X0,X,) with maps m :X0-X, 

and y :X,-+X,. Consider the field (f?, C) where R = the reals, C= the complex field, 
m: R+C the usual embedding and y is complex conjugation. Then there is no 
algebraic extension of (R,C) within the topos G. We might say that (R, C) is 
maximally algebraic. The profinite Galois groupoid is therefore not Morita equi- 
valent to any profinite group. 

5.5. Theaters and profinite actions. A theater was defined in [6] to axiomatize the 
notion of a profinite group acting continuously on a ‘theater of action’. As shown in 
[6], every theater gives rise to a profinite group r. As we might expect a theater also 
gives rise to a profinite action over r. [Using the generic theater, from [6], this 
means finding a left exact functor from Fin Act OP to Fun( T,, Sets) where T,, is the 
category of finite theaters. But each finite theater t can be viewed as a finite action 
and the desired functor associated to (A, G) in Fin Act sends t to the set of action 
maps from (A,G) to t.] The converse is not true as theaters are too rigid. For 
example every theater must be decidable (as shown in [6]). 

5.6. Morita equivalence is weaker than natural equivalence. This is not surprising, 
but for the record here is a simple example. Let G be the trivial group and H the 
groupoid with two objects and a single isomorphism in each horn set. Then G 
and H are profinite groups is Sets (e.g. by S.l), and are easily seen to be Morita 
equivalent. But as functors from Fin Cat to Sets, G and Hare not equivalent, even 



24 J. F, Kennison 

their restrictions to finite groups differ. For example G(Zz) = Hom(G, Z,) has only 
one element, but H(Zz) = Fun(H, Z,) has 2 (essentially different) elements. 

5.7. Full algebraic closure. Let L be a separably closed field in a topos 8. It is 
relatively easy to make L into an algebraically closed field, and stay within 6’. We 
sketch the construction. If L is a field over Z,, we simply add pth roots. In the 
general case, there is subobject I/ of 1 of d where L satisfies the condition that p = 0 
for some prime p. Let Bc be the open topos and 8, the closed topos as in the Wraith 
glueing (e.g. [4, p. 1121). Further decompose RO into the g,,(p), where p = 0 and add 
pth roots to the part of the field over &o(p). Leave the part of L in 8, alone. Then 
the pieces can be re-glued to get an algebraically closed extension. 
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